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in indoor environments opens the door for building occupancy-count estimation. Studies have
shown that occupant’s detection and building occupancy-count estimation can be utilized to
improve the efficiency of building operation and management. This research introduces new
models to study the performance of such indoor localization and building occupancy-count
estimation using the available technological advances in 5G Ultra-Dense Networks (UDNs). We
propose an algorithm to collect the Received Signal Strength Indicator (RSSI) from User Equip-
ments (UEs) and use it to build a fingerprinting database. We then use Machine Learning (ML) to
estimate the location of the UEs in buildings from their RSSI values. Detecting users in the
building is treated as a binary-classification problem. We then use various ML algorithms to build
models for indoor occupancy-count estimation. Finally, the localization of users is used to esti-
mate occupancy in specific sections of the building. The simulation results show that UDNs can
provide accurate indoor localization, occupancy-count estimation in a building and in parts
within the building.

1. Introduction

The interest and market for indoor localization are increasing at a rapid rate. Localization is becoming an essential part of Internet
of Things (IoT) applications in many areas, such as healthcare, defense and military, logistics and warehousing as it allows adding
location context to the IoT data automatically. Another reason for this increasing interest in indoor localization is the proliferation of
mobile devices and the emergence of mobile applications that depend on the location of the operating devices to provide the intended
services. As such, indoor localization has received much interest from both industry and academia [1].

In addition to indoor localization, there has been an increasing interest in building occupancy detection and occupancy-count
estimation [2,3], which can be used to optimize the operation of different systems within a building, such as lighting and HVAC
(Heating, Ventilation, and Air Conditioning). For instance, such systems can be activated only when the building is occupied, which
can significantly reduce the energy consumption and carbon footprint of buildings. This is particularly important nowadays because
studies have shown that buildings are responsible for approximately 40% of the main energy consumption in the U.S. and Europe, and
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27.3% of that in China. Furthermore, space and water heating account for the majority of building energy consumption, which
translates to approximately 40% of the CO, emissions [4].

The Global Navigation Satellite System (GNSS) has been the main technology for localization, and most mobile devices nowadays
are equipped with a GNSS antenna. Nevertheless, this technology is not reliable in indoor environments due to signal obstruction. As
such, other transmission technologies have been utilized for indoor localization. This includes Wi-Fi [5-7], Bluetooth [8,9], and Radio
Frequency Identification Device (RFID) [10]. Wi-Fi and Bluetooth technologies are suitable for localization as most mobile phones
today are equipped with Wi-Fi and Bluetooth antennas.

There has also been an increasing interest in utilizing cellular communication for indoor localization. Localization using cellular-
based system has advantages over Wi-Fi and Bluetooth. First, cellular networks are widely adopted and capable of covering areas
where Wi-Fi access points or Bluetooth devices are not available. The geographically wide area that can be covered by cellular net-
works makes it possible to provide the locations of users sparsely distributed. Such localization over a wide geographical area can be
used to provide different services, such as indoor navigation, location-based marketing, analyzing visitor traffic, and building
occupancy-count estimation. Furthermore, this information can be used to study and analyze occupancy and traffic patterns. An
example is analyzing the times and locations of pedestrian high traffic within a building for future expansion purposes. Another
advantage of cellular-based localization is that it relies on existing infrastructure and does not require the installation and setup of
sensors and networks for localization purposes. In addition to the above, emerging 5G technologies provide promising solutions for
mass-market localization applications. Cellular and mobile networks have seen a continuous and dramatic increase in the expected
requirements (e.g., coverage, availability, data rate, and latency). Moreover, the Internet of Things (IoT) applications that can be
implemented over cellular networks (e.g., traffic monitoring, wearables, and health) are causing the number of devices connected
through such networks to continue increasing exponentially. Network densification provides an approach to increasing the provided
data rates over cellular networks to satisfy the increasing demands. Network densification increases the number of nodes in the Radio
Access Network (RAN). This includes the nodes (deployed by the operator or user) that reside between the mobile device, i.e., User
Equipment (UE) and the core network (CN) [11]. Due to the advantages of network densification (increasing network coverage,
throughput, and frequency reuse), Ultra Dense Networks (UDNs) are widely adopted, and the degree of densification is expected to
continue increasing.

In this research, we introduce various models and conduct many simulation studies for indoor UDNs based on scenarios from the
3GPP standards. The models are built as Discrete Event System Specification (DEVS) components [12,13]. Based on the models we
defined, we executed a variety of simulation scenarios for indoor UDNs. From the simulation results, we extracted multiple data sets of
UEs’ positions and their Received Signal Strength Indicator (RSSI) values. The collected data was used to build a fingerprinting
database for each scenario. Various Machine Learning (ML) algorithms were used with the constructed databases to build and evaluate
models for indoor localization and building occupancy-count estimation. Furthermore, we evaluate the use of UDNs for
occupancy-count estimation at parts of a building (e.g., lab areas). For this purpose, we construct a model of a UDN in a real building
and evaluate the occupancy-count estimation in 3 subareas in that building. Results show that UDNs and ML can be used for locali-
zation of users, and occupancy-count estimation at the building level, and finer levels, i.e., areas of a building. In the following, we
summarize the contributions of this work:

e An algorithm for RSSI reporting for localization and occupancy estimation purposes

A model for UDNs based on the 3GPP standards

Multiple fingerprinting datasets collected through experiments with the developed model

Using ML algorithms with the collected datasets to build and evaluate models for indoor localization

Proposed approach for building occupancy-count estimation using binary classification models

Employing the proposed approach using many ML classification algorithms with the collected datasets to build and evaluate models
for building occupancy-count estimation

o Studying the use of UDNSs for occupancy-count estimation at parts of a building (e.g., lab areas) based on an actual building plan

The rest of this paper is organized as follows. In Section 2, we present the different background topics for this work and review the
related work in the literature. In Section 3, we provide a brief review of UDNs. In Section 4, we present the proposed algorithm for RSSI
reporting and collection for localization and occupancy estimation, as well as our DEVS model. In Section 5, we discuss the obtained
results. In Section 6, we state the conclusion and future work.

2. Background and related work
2.1. Indoor localization and occupancy-count estimation

Indoor localization has many applications in various areas nowadays (e.g., healthcare, defense and military, logistics and ware-
housing, mobile applications). Localization is becoming an essential part of the Internet of Things (IoT), which is an important
technology that is not only shaping the future of various industrial applications, but also becoming an integral part of our lives. IoT has
important applications nowadays, in areas such as healthcare, traffic monitoring, agriculture, the smart grid, and wearables. Local-
ization and positioning techniques allow adding location context to IoT data without human intervention. As such, there has been an
increasing deal of work to integrate localization with IoT and provide location-enabled IoT [9,14,15]. Furthermore, localization is
becoming important for mobile applications that depend on the location of the operating devices to provide the intended services.
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Different approaches have been proposed to use transmission technologies, such as Ultra-WideBand (UWB), Wi-Fi, Bluetooth and
RFID, for localization [1,5,6,8,10,16-18]. UWB is a radio technology that utilizes low energy transmission over a wide portion of the
radio spectrum for high-bandwidth and short-range communications [19]. It has been employed in applications such as localization
[17,18], tracking, and sensor data collection [19]. Although UWB can be used to provide accurate indoor localization, it can be a costly
solution. The location tags and infrastructure of UWB systems are very expensive and could be an order-of-magnitude more expensive
than the tags of Bluetooth. For indoor localization, Wi-Fi and Bluetooth technologies provide good options because most smart phones
nowadays have Wi-Fi and Bluetooth antennas integrated into them. However, such methods would require a Wi-Fi or Bluetooth
network to be setup in the building for localization to be performed. Unfortunately, this is not always the case, and even if such
networks are available, there are always gaps in the coverage within a building. As such, there has been interest in utilizing cellular
communication for indoor localization. Due to the wide adoption of cellular networks and their capability of covering areas where
Wi-Fi access points or Bluetooth devices are not available, they can provide advantages for indoor localization.

Many localization methods, such as the Received Signal Strength Indicator (RSSI), Time of Arrival (TOA), Time Difference of
Arrival (TDOA), and Angle of Arrival (AOA)-based methods, have been implemented with the aforementioned transmission tech-
nologies [1,20]. The TOA, TDOA, and AOA-based localization methods either require sophisticated hardware (antenna arrays) or
accurate time synchronization to estimate the location of the intended device. The requirements above increase the cost and
complexity of the localization system and might not always be available. RSSI-based systems employ the variation of the signal
strength over space, and hence, do not necessarily require sophisticated hardware, which makes them implementable with available
hardware and reduces the cost. Furthermore, RSSI-based systems do not need time synchronization and angle measurement, which
makes them much simpler to implement. The majority of RSSI-based localization systems use fingerprinting, trilateration, or trian-
gulation as the localization approach based on measured RSSI values. Among these approaches, fingerprinting is widely adopted due to
its high accuracy, and hence it is used in this research.

There has also been an increasing interest in building occupancy detection and count estimation to optimize building operation and
reduce the energy consumption of buildings. Reducing buildings’ energy consumption, which accounts for a significant share of energy
consumption worldwide [3], would reduce the carbon footprint of buildings and alleviate the energy shortage problem. Occupancy
detection can be used to efficiently operate buildings and reduce their energy consumption, by activating and controlling the amount
and location of services (e.g., HVAC systems [2,3,21]) only when and where needed (e.g., when occupants’ presence is detected).

Building occupancy estimation has received much interest due to its importance in optimizing buildings’ operations [2,3]. Different
types of sensors can be used to extract data (e.g., Passive InfraRed (PIR) sensors, CO2 sensors, humidity sensors, temperature sensors,
pressure sensors, keyboard and mouse activities, and camera footage). Some of the work in the literature relies on such data for
detecting and estimating the number of occupants [2,3]. However, such methods can be costly due to the need to deploy and maintain
systems of sensors. There have also been methods that utilize transmission technologies (e.g., Wi-Fi and Bluetooth) for occupancy
detection and estimation. Such systems sniff the signals of Wi-Fi or Bluetooth devices and use the sniffed data for occupancy detection
and estimation. However, cellular networks can also be used for occupancy detection and count estimation, and they can provide
advantages over Wi-Fi and Bluetooth, as discussed above.

2.2. 5G ultra-dense networks and cellular networks-based localization

Recent work has considered employing the signals transmitted by the Base-Stations (BSs) of cellular networks for localization. The
advantage of such a system over approaches based on sensor data is that it does not need the setup and maintenance of dedicated
sensors, as the infrastructure of cellular networks is widely available and employed for cellular communications. Furthermore, such an
approach has the potential to generate more accurate occupancy-estimation results than sensor data-based approaches due to the
popularity and proliferation of mobile devices.

In addition to the above, cellular-based localization systems can provide localization in areas where Wi-Fi and Bluetooth coverage
is unavailable. This is due to the extensive coverage of cellular networks which, spans large geographical areas. This large coverage can
also be used to track occupants’ movement within a building, to analyze occupancy and traffic patterns, and identify any trends. For
example, the location of occupants throughout the day can be analyzed to identify times or areas of high density.

A cellular network is a communication network in which the coverage area is partitioned into cells. Mobile devices (known as UEs)
communicate with a transceiver called a BS or evolved Node B (eNB) [22]. This communication between the UEs and their BS occurs
over radio links, and this part of the network that includes the eNBs and the radio links is called the RAN (Radio Access Network). BSs
are usually interconnected through the backhaul; a high-speed wired network.

Cellular and mobile networks have seen a continuous increase in the expected requirements (e.g., coverage, availability, data rate,
and latency). Moreover, the Internet of Things (IoT) applications that can be implemented over cellular networks (e.g., traffic
monitoring, wearables, and health) are causing the number of devices connected through such networks to continue increasing
exponentially. Network densification is a key technology in 5G systems that will help satisfying these increasing demands [22,23].
Network densification increases the number of nodes in the RAN. This includes the nodes (deployed by the operator or user) that reside
between the mobile device, i.e., UEs and Core Network (CN) [11]. Due to the advantages of network densification (increasing network
coverage, throughput, and frequency reuse), UDNs are widely adopted in 5G networks, and the degree of densification is expected to
continue increasing.

There has been an increasing effort to utilize cellular wireless systems for localization. A technique for anonymous outdoor location
tracking of mobile users in cellular networks was proposed in [24]. The proposed method runs on the network side to use collected
information for automatic traffic monitoring, population movement estimation, and criminal activity monitoring. The topology of the
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cellular network is also exploited, along with open maps, modes of transportation and route filtering. While such a technique can be
used to track users at a coarse level to estimate traffic and population movement, it is meant for outdoor environments and it does not
provide accurate locations of individual users, as best performances were obtained in urban environments with median accuracies of
up to 112m.

In [25], a method was proposed to estimate the BS location using RSSI with only one mobile receiver in conditions where the
path-loss exponent is unknown. This provides a more convenient and economic alternative to methods that require multiple mobile
receivers. While it is important to localize the BS, there is more interest and demand for new methods to localize UEs in the cellular
network as it has many applications that were discussed in the introduction.

The use of different measurements from LTE networks for localization has been previously proposed. In [26], the use Channel State
Information (CSI) of LTE signals for localization was proposed. CSI measurements were used in a fingerprinting-based localization
system. The usability of LTE CSI feedback in localization has been evaluated through multiple experiments in indoor and outdoor
settings.

In [27], another localization system based on LTE-A networks is proposed. In the proposed system, multiple radio channel pa-
rameters are mapped to geographical locations, creating a fingerprinting database. Moreover, a feature-extraction algorithm was
employed to identify unique channel parameters and use them in the fingerprinting database of channel parameters and UE locations.
Results conducted in indoor and outdoor environments show that localization errors (median) of 6 and 75 meters, can be obtained in
indoor and outdoor settings, respectively.

The use of CSI from LTE signals for fingerprinting-based indoor localization was also proposed in [28]. In this approach, a vector
that serves as the shape of the channel frequency response is used to build the fingerprinting database, as opposed to the CSI mea-
surements themselves. Furthermore, BS signaling messages are used for localization (as opposed to designated communication be-
tween the BS and the UEs) which allows passive localization and reduces the computational complexity and memory requirements.

The authors of [29] evaluated the accuracy of LTE-based localization. Fingerprinting was used by collecting LTE measurements in
the 800 MHz, 1800 MHz, and 2600 MHz frequency bands. The fingerprinting database consisted of UE positions and their received
signal strength radio measurements from multiple BSs. Two systems were evaluated. The first system is composed of an LTE network,
while the second system is composed of LTE and WLAN networks. Obtained results show that partial fingerprints that consisted of LTE
and WLAN radio measurements improve localization accuracy by at least a factor of 3.5x while keeping the percentage of discarded
samples low.

In [30], Cell-Specific Reference Signal (CSRS) measurements from LTE signals were used for indoor localization. Two algorithms
were proposed for localization. In the first approach (Threshold-to-Noise Ratio), TOA was used for localization. The second algorithm
is known as "ESPRIT," which stands for "ESPRIT and Kalman filter for time of arrival tracking" (EKAT). The second algorithm is more
accurate and robust to multipath fading, at the expense of increased complexity.

In [31], a fingerprinting-based localization method was proposed for commercial LTE systems. In the proposed method, CSI
feedback is collected from the LTE BS. Intrinsic features are extracted from the collected CSI feedback to be used for localization.
Furthermore, a time domain fusion approach was used to assemble multiple positioning estimations.

In [32], a NN-based indoor localization approach was proposed for LTE signals. The approach estimates, from the channel impulse
response (CIR), the range between the LTE BS and the UE. A software-defined radio extracts the CIR. A Long Short-Term Memory
(LSTM) model recurrent neural network (RNN) is used to estimate the range from the extracted CIR. When compared to the results
obtained using an RNN without LSTM, the obtained results show a reduction in the ranging error was reduced from 13.11m to 9.02m.

In [33], the uplink sounding reference signal (SRS) in LTE networks, which includes timing and RSSI information, is used for indoor
localization. In this approach, an LTE-based localization system using TDOA and the fingerprint of RSSI that operates in two steps is
proposed for indoor positioning. In the first step of the proposed method, SRSs are collected from spatially separated sensors and peak
value detection is applied to the collected SRSs to estimate the TDOAs, from which a coarse target location is estimated. Thereafter,
fingerprinting in a subarea containing the coarse solution is applied to extract a final estimate of the location.

Many of the methods above are based on TOA or utilize CSI estimates, which require either accurate time synchronization or
sophisticated hardware (antenna arrays), to estimate the location of the intended device. Furthermore, all the proposed methods above
are based on the macro-cell architecture, with relatively high transmission power and large coverage area eNBs that serve a high
number of users. There are also some simulation-based studies on wireless technology-based localization, but they are mostly on
localization for wireless sensor networks [34], or other transmission technologies [35], and they do not consider 5G UDNs. Here, we
focus on localization over UDNs. The accuracy of localization with such architectures should be higher due to the high number of
deployed elements (e.g., Pico eNB (PeNB)) in the RAN.

In [36], we presented the idea of using UDNs for localization and occupancy-count estimation. Furthermore, in [37], we used the
DEVS formalism [13] to build a model for indoor UDN networks. The considered scenarios and parameters used in the models are
obtained from the 3GPP standards. Based on the developed models, we ran simulations for indoor UDN scenarios and collected data
sets for the UEs positions and their RSSI measurements. From the collected data, we compiled a fingerprinting database and used the
kNN algorithm to build a localization model and evaluate the accuracy of fingerprinting-based indoor localization with UDNs. Here,
we extend our work in [37]. First, we use DNNs to build localization models and achieve an improvement over the results obtained
with kNN. Furthermore, we show that more accurate results can be achieved by decreasing the inter-distance between the stations in
the building. In addition to indoor localization, we propose ML approaches for building occupancy-count estimation using RSSI of 5G
UDNSs. We treat the detection of occupants inside the building as a binary classification problem. Many ML algorithms (e.g., KNN, SVM,
decision tree, etc.) are used to build occupant detection models, and the results of the classification algorithms can be used for building
occupancy-count estimation. Furthermore, we evaluate the use of UDNs for occupancy-count estimation in different parts of a building
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(e.g., lab areas). For this purpose, we build a model of a UDN in a real building and evaluate the occupancy-count estimation in 3
subareas (labs) in that building. Results show that UDNs and ML can be used to achieve localization of users, and accurate
occupancy-count estimation at the building level, and at a finer level, i.e., areas of a building.

DEVS provides a sound formal framework for modeling generic dynamic systems [12,13,38,39]. The hierarchical and modular
nature of DEVS makes it very suitable for modeling such systems. Furthermore, the framework also includes formal specifications,
which help defining the behavior of the components of the system, and its structure. There are two types of components in a DEVS
model: structural (coupled) and behavioral (atomic) components. The coupled components are used to build the structure of the
system, while the atomic components are used to define the behavior of the components of the system. All the facts above make DEVS
very suitable for modeling and simulating mobile networks. With DEVS, different submodels can be defined; each one implements a
different component of the wireless network, such as the BS or the UE. These submodels can be tested and verified, independently, and
integrated into the whole model. These submodels can also be reused in other relevant models. These features make it easy to design,
implement, and evaluate network models with DEVS.

2.3. Machine learning for regression and classification

An ML model is a mathematical representation of the patterns or structures hidden in data. When the ML model is trained on
training data, it finds patterns or structures in that data. Such patterns or structures are formalized into a mathematical model, which
can be used on unseen data to predict values or to discover some relationship within it. ML models are categorized as either supervised
or unsupervised [40,41]. In this work, we focus on supervised learning, as all the used algorithms fall under this category. With su-
pervised learning, a model is trained by example using a labeled dataset, i.e., a dataset where the input-output pairs are provided.
Supervised learning models can be used either for regression or classification. In regression models, the output is continuous (e.g.,
predicting house prices based on their sizes), while in classification models the output is discrete (e.g., classifying people as
diabatic/non-diabatic based on their weight, height, etc.).

In this work, we use regression algorithms to build models to estimate the locations of the UEs from the RSSI values (of received
signals from all the PeNBs in the building). We also use classification algorithms to build models to classify UEs as inside or outside the
building and use those for building occupancy-count estimation. In the following, we present the regression and classification algo-
rithms used in this work.

The k Nearest Neighbors (kNN) algorithm is used in this work for localization (predicting the coordinates of devices). The kNN
algorithm is an ML algorithm that consists of the following steps:

1 Calculate the distance between test data and each row of the training data (Euclidean distance)
2 Sort the calculated distances in ascending order based on distance values

3 Get the top k rows from the sorted array

4 Predict the distance from the nearest neighbors

In addition to solving regression problems, the kNN algorithm can be used as a classification algorithm as well. The difference is in
the last step. When used for regression, the algorithm uses the values of the nearest neighbors to predict the value (e.g., by taking the
average value). On the other hand, when used for classification, it will use the most popular value among the values of the nearest
neighbors as the chosen class.

An Artificial Neural Network (ANN), or simply a Neural Network (NN), is a computing system that is designed to build ML models
by loosely modeling the human brain. An ANN contains a group of nodes that are connected to each other. These nodes are referred to
as artificial neurons [42]. Each artificial neuron receives an input or a set of inputs, applies a non-linear function, and produces one or
more output values (that might be used as the input to other neurons). An ANN is typically structured into layers, where these layers
may perform different transformations on their inputs. An ANN is composed of an input layer, one or more hidden layers, and an output
layer. Features (values used for prediction or classification) are used as the input of the ANN and fed to an input layer. These values
traverse the hidden layer(s), into the output layer. A Deep Neural Network (DNN) is an ANN with multiple hidden layers. DNNs are
considered a powerful category of ML algorithms that demonstrated exceptional learning capabilities over a wide range of
applications.

Decision trees are popular algorithms that can be used to build classification models [40,41]. A tree is built by dividing the root
node (which comprises the whole dataset) into subsets, i.e., successor children. This splitting of the node into children is done based on
rules that group entries with similar features into the same subgroup (child node). The splitting process is usually repeated multiple
times to create a multi-level tree in a recursive fashion. The recursive partitioning stops when the subset at a node has all the same
values as the target variable, or when splitting no longer adds value to the predictions.

Support Vector Machine (SVM) is another popular supervised learning algorithm that is used for classification [40,41]. A SVM finds
the best hyperplanes in a multi-dimensional space that separate the data points into multiple classes. SVM tries to find the hyperplanes
that are the furthest from the nearest training-data point of any class. This distance to the nearest data point is called the functional
margin, and it represents the lowest relative confidence of all classified points. SVM is effective in high-dimensional spaces and gives
reliable results when there is a clear margin of separation between classes.

Logistic regression (LR) is a popular algorithm that is usually used for binary classification [40,41]. LR is an extension of the linear
regression model for classification problems. Instead of fitting a straight line or hyperplane, LR uses the logistic function to transform
the output of a linear equation into another value between 0 and 1. LR also gives the probability that a data point belongs to each of the
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considered classes.

There are many evaluation metrics for classification algorithms. Before defining some of the popular metrics that are used in this
research, we will define 4 important concepts: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).
These are defined as follows:

TP: A data point predicted to belong to certain class, and it does belong to that class

TN: A data point predicted to not belong to certain class, and it does not belong to that class
FP: A data point predicted to belong to certain class, but it does not belong to that class

FN: A data point predicted to not belong to certain class, but it belongs to that class

Accuracy is a metric that measures the fraction of correct predictions produced by the model. It is defined as the number of correct
predictions over the total number of predictions. The accuracy value ranges from 0 to 1, with a higher value representing a better and
more accurate model. The recall (also known as the true positive rate) gives the ratio of the correctly identified TPs out of all positives,
i.e., TP/(TP+FN). Precision is the ratio of correctly identified as positive out of all predicted as positives, i.e., TP/(TP+FP). The F1 score
is a metric that tries to measure the precision and recall simultaneously, as it is important to have good values for both measures. The
F1 score is defined as (precision * recall) / (precision + recall). The F1 value ranges from 0 to 1, with the higher value representing a
better model. The Jaccard index is a statistical metric that is used to measure the similarity of two different sets. In the context of
classification, the Jaccard index is used to measure the similarity between the sets of actual classes and predicted classes. The Jaccard
index value ranges from O to 1, with the higher value representing a higher similarity between the two sets (better model). Finally, the
log loss is a metric used with models that predict the probabilities of a data point belonging to each one of the considered classes, such
as LR. In such cases, it would be useful to have a metric that measures how far each predicted probability is from the actual class, and
that is what is measured by the log loss. The log loss value ranges from O to 1. However, unlike the other metrics, the lower the log loss
value the better the prediction, as it is related to the complement of the classification probability of the correct class.

3. UDNSs for Indoor Localization
3.1. 3GPP UDN scenarios

As discussed in the previous section, new network architectures such as UDNs and Ultra-Dense Heterogeneous Networks
(UDHetNets) provide many performance gains, which helps meeting the increasing performance requirements of 5G cellular networks
[11].

With UDNs, the number and density of radio elements is increased, which improves the throughput, delay, and network coverage.
UDHetNets are different from UDNs in that several types of radio elements (with different capabilities) coexist in the network. This is
achieved by overlaying macrocells with low-power nodes, which can offload traffic, such as Remote Radio Head (RRH), PeNB and
Home eNB.

Different scenarios for UDNs and UDHetNets were proposed in the 3GPP standards [43]. Some of these scenarios are for ho-
mogenous networks where similar elements, such as PeNBs, are deployed in the network. Other scenarios are for UDHetNets where
different types of cells coexist in the network (e.g., eNBs and PeNBs).

The following four scenarios were proposed in the 3GPP standards [43]:

e Scenario A-Indoor small cell deployment: In this scenario (Fig. 1), the network is built from a single layer of small cells in an indoor
environment.

e Scenario B-macro cell deployment: In this scenario, the network comprises of a single layer of macro cells.

e Scenarios C and D-Heterogeneous network of urban macro and outdoor small cell deployment: In these scenarios, the network
consists of macro cells that coexist with small cells. The two scenarios differ in the method of channel allocation for the two
different layers.

¥ 1.

| A

e ———n—— -
e

Fig. 1. Indoor small cell deployment (scenario A).
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In this work, we focus on scenario A (indoor small cell deployment) because our goal is utilizing UDNSs for indoor localization and
building occupancy-count estimation. Table 1 lists the transmission parameters provided by the 3GPP standard for this scenario. These
parameters will be adopted in our work. Most importantly, the table states that the scenario is constructed from a single layer (ho-
mogenous network) of Transmission Points (TPs), and the recommended distances between these points are 20 m or 30 m.

3.2. Methodology and localization approach

In this work, the RSSI values sent from the UEs to the PeNBs are used for localization. Fingerprinting-based localization is employed
here. Fingerprinting is composed of two main phases: the training phase and the localization phase. In the training phase, a database of
pairs of positions in the building and the corresponding RSSI values (for that position) is first built. In the localization phase, the
fingerprinting database is used to estimate the location of the UEs from the RSSI values received from the devices to be localized.

We ran simulations for indoor UDN scenarios. Multiple datasets (of UEs’ locations and corresponding RSSI values) were collected
from the outputs of the simulation experiments. From the collected data, a fingerprinting database is built. Various ML models for
indoor localization and building occupancy-count estimation in UDNs were developed and evaluated. Localization accuracy is
considered as the performance metric for indoor localization. Various metrics (accuracy, precision, etc.) are used to evaluate occu-
pancy detection inside the building.

In the following sections, we discuss in detail the approach used for localization and occupancy-count estimation, as well as the
developed model for UDNs.

4. Data collection method and the model
4.1. Data collection

In the proposed method, we employ the RSSI values that are calculated by the UEs, based on the strength of the received Reference
Signal (RS) that is transmitted by the PeNBs. Here, we discuss the proposed method for data collection, which is illustrated in Fig. 2.

PeNBs send a RS periodically to the UEs. RS is a special signal that exists only at the PHY layer, and it is not used to deliver data, but
rather to convey to the UEs the reference point for the downlink power. The RS is also used by the UEs for channel estimation. As the RS
data is known by both the sending PeNB and the UE, the UE can compare the received RS to the original RS to estimate how the channel
impacts the transmitted signal. The UEs also calculate the RSSI, which measures the average total received power observed only in
OFDM reference symbols in the measurement bandwidth over N resource blocks.

The steps for the collection of the fingerprinting data are as follows:

PeNBs send the RS periodically.

The RS is received by UEs within the transmission range.

The UEs estimate the RSSI values.

UEs send to their serving PeNBs reports of the RSSI values from the surrounding PeNBs.

These reports are forwarded to a central processing unit/server to process the data and perform localization.

ML-based models are used to estimate locations of UEs. Location of UEs can be provided as a service (security is beyond the scope of
this work).

4.2. DEVS model

As previously mentioned, we defined a DEVS model for an indoor UDN network (scenario A) [43]. Fig. 3 illustrates our model,
which contains an Area coupled model, which comprises of a Transmission Medium atomic model, many PeNB atomic models, and many
UE coupled models. Furthermore, the model contains the Processing Unit/Server and Manager atomic models.

Instances of the PeNB model represent PeNBs in the studied area. The PeNBs send RS that is received by the UEs in the area. RS is
generated by the PeNBs regularly (e.g., every 5 ms).

A UE coupled model consists of two atomic models: UE Queue and UE Controller. Incoming messages are cached in the UE Queue.
The Queue atomic model includes a functionality to check the destination address of a received message and drop messages with a
destination address that is not a broadcast address or does not match that of the UE. The UE Controller is where the processing

Table 1
Transmission parameters for scenario A.
Parameters Scenario A
Type Indoor Hotspot (Fig. 1)
Layout Single layer (indoor TP)
Inter-Site Distance (ISD) 20m, 30m
Carrier frequency 3.5 GHz
System Bandwidth 10MHz (50RBs)
Channel model Channel model available in document TR 36.814
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performed by the UE is implemented. The transmission medium is modeled with the Medium atomic model. The Processing Unit/Server
is any component in the access or core network that can be selected to process the data. It is the central location where RSSI data is
forwarded, and where the models are used for inference to perform localization or occupancy detection.

The Manager atomic model is used to initialize and update the different parameters throughout the simulation, such as the wireless
environment and the links between the eNBs and UEs. In the following, we discuss the transmission model adopted in this study.

4.3. Transmission model

In this study, we consider pathloss, shadowing, as well as small-scale fading. The pathloss model for indoor hotspot [44] was
employed here. This model is composed of two pathloss equations. One is for the Line Of Sight (LOS) case, and the other is for the None
Line Of Sight (NLOS) case. These are shown in Table 2.

PL in Table 2 is the pathloss in dB, d is the distance between the transmitter and receiver in meters, f, is the carrier frequency in GHz,

Table 2
Indoor hotspot pathloss model [43].
Scenario Path loss [dB] Note: f. [GHz], Distance [m] Shadow fading std [dB] Applicability range, antenna height default values
LOS 3m<d<100m
PL = 16.910g10(d) + 32.8 + 20log10(f.) c=3 hps =3-6 m
hyr =1-2.5 m
NLOS 10m < d< 150 m
PL = 43.3log1o(d) + 11.5 + 20log10(f.) c=4 hps = 3-6 m
hyr = 1-25m
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and o is the shadow fading standard deviation in dB.
The LOS probability is used to determine whether a certain link is a LOS or NLOS. The LOS probability for Indoor Hotspot model
was adopted [44]. The formula for the LOS probability is given as follows,

1, d<18
Pros =14 e 70, 18 <d< 37 o))
05, d>37

where d is the distance between the transmitter and receiver in meters. The NLOS probability is given by:
Prros =1 = Pros 2)

As can be seen from the equation, the LOS probability depends on the distance between the transmitter and receiver. In addition to
pathloss and shadowing, we considered small-scale fading. It is worth mentioning that we use the scenario and channel model above
for indoor environment because they are adopted by the 3GPP standard. However, there are other channel models proposed by re-
searchers (e.g., [45,46]) that could be considered in future work.

5. Simulation scenarios and results

In this section, we present the results we obtained for indoor localization and building occupancy-count estimation. First, we
present the results for indoor localization. Afterwards, we present the obtained results for occupancy estimation at the building level.
Finally, we present the obtained results for occupancy estimation for parts of a building.

5.1. Indoor localization with kNN

As previously discussed, a fingerprinting approach is considered for localization in this study. As such, we consider a scenario with a
grid of UEs distributed in the studied area to build the fingerprinting database. Fig. 4 shows the employed scenario. The figure depicts a
scenario with 8 PeNBs distributed evenly in an area of 40 m x 80 m. We use the recommended ISD, i.e., 20. The same ISD can be used to
distribute the PeNBs in an area with different dimensions and fewer PeNBs can be used to cover a smaller area. Furthermore, a grid of
UEs is distributed in the area with a separation of 2 m x 2 m. These UEs will be used to build the fingerprinting database.

Two ML algorithms are used to build the localization models: KNN and DNN. In this section, we present the localization results
obtained with kNN, and in Section 5.2, we present the results obtained with DNN.

With the kNN algorithm, we use different values for k (the number of neighbors). We divided the data set into a training set, which
comprises 80% of the data set, and a test set which includes 20% of the data set. We use the test set to generate predictions with kNN
with different k values. We use predictions generated with the test set to evaluate the results and choose the best k value. We use the
localization/estimation error as the evaluation metric to assess the accuracy of the localization approach.

Table 3 shows the mean estimation error values for different k values, and different values for the simulation period, T, i.e., the
simulation period over which the UEs locations and corresponding RSSI values were collected. The longer the period T the bigger the
data set collected and used in the fingerprinting database. Table 3 shows that an estimation accuracy of 5.7 m can be achieved with
data captured in as little as 500 ms. This is already an improvement over proposed systems based on cellular networks. A comparison
with results achieved by other proposed cellular network-based systems is provided in Section 5.2. Furthermore, we will see in Section
5.4 that reducing the inter-distance between the stations will further improve the localization accuracy. The results also show that a k
value of 12 seems to give the lowest estimation error. Generally speaking, increasing the k value will cause more nearby neighbors to be
involved in estimating the location, and hence achieve a more accurate estimation. However, after a certain point, increasing the k
value will cause neighbors who have values that are far from the real location to be involved, increasing the estimation error.

Fig. 5 shows the learning curve for the localization approach (with k=12), i.e., the achieved estimation error with the simulation
interval, T, which indicates the length of the data set used with the kNN algorithm. The longer the simulation period, the bigger the
dataset collected and used to train our model. As one can see, the approach starts to plateau after 500 ms. After 500 ms, doubling the

Fig. 4. Simulation scenario for the indoor localizatino experiment.
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Table 3
Mean localization error (in meter) for different values of k and T..
k

T (ms) 4 8 12 16
100 6.4999 6.3075 6.3035 6.3839
200 6.2313 6.0313 6.0120 6.0391
300 6.1804 5.9125 5.8646 5.8773
400 6.1397 5.8292 5.7739 5.7786
500 6.0942 5.8036 5.7213 5.7245

dataset/interval only achieved a 0.14 m improvement in the localization error.

Table 4 shows the mean and the 95% Confidence Interval (CI) of the estimation errors. A 95% confidence interval is the range of
values that you can be 95% certain it contains the true mean of the population. As one can see, the CI values are exceptionally low,
which indicates that the shown mean values represent with high confidence, the actual mean of the estimation errors.

Fig. 6 shows the boxplot of the estimation error for estimations obtained with 2 different models. The first model was trained with
data collected over 0.5 s, while the second was obtained with data collected over 1 s. As mentioned before, the difference in the mean of
the estimation error achieved by both models was only 0.14 ms, which means that doubling the simulation period (dataset) did not
achieve a significant improvement in the estimation results. Fig. 6 shows the minimum, first quartile (Q1), median, third quartile (Q3),
and maximum values for the estimation errors achieved with both models. As one can see, the statistics obtained from both models are
similar, which further confirms that increasing the size of the dataset beyond 500 ms did not achieve significant improvement.

In the following, we evaluate the improvement achieved by decreasing the spacing of the test points, i.e., decrease the spacing
between the UEs in the UE grid used to collect the data set. At simulation interval T=200 ms, the mean values (for the estimation error)
achieved by 2m x 2 m grid and 1 m x 1 m grid are 5.72 m and 5.50 m, respectively. As such, reducing the spacing between the test
points, which results in increasing the number of test points by a factor of 4, did not cause a significant improvement in the achieved
mean estimation error (only 0.22 m). It is worth mentioning that increasing the number of test points by a factor of 4 results in
increasing the number of computations and the model’s training time significantly. Fig. 7 shows the boxplot of the estimation error for
the 2 models with different spacing between UEs in the grid. The figure shows that the statistics of the estimation errors achieved with
both models are close. For instance, one can see that the maximum estimation error achieved by the 1 m x 1 m grid is not a significant
improvement from the one achieved by the 2 m x 2 m grid. This can be explained by the fact that moving a UE closer or further away
from the PeNB by 1m does not cause a considerable difference in the values of the received signal strength. Considering the major
increase in the computations and model training time, we can conclude that a grid of 2 m x 2 m would be enough for training the
model.

5.2. Indoor localization with deep neural netwrok

Here we build a localization model from the fingerprinting database used in the previous section. However, we use a DNN instead of
the kNN algorithm. The DNN has an input layer, two hidden layers, and an output layer. Each hidden layer has 30 nodes. The features
for the DNN are the RSSI received from the different PeNB, while the predicted values (dependent variables) are the coordinates of the
device in the building. The architecture of the DNN is shown in Fig. 8. The dataset was divided into training and test sets, where the
training set comprises of 80% of the complete set. The stochastic gradient descent algorithm was used to train the DNN with learning
rate of 10~“. The architecture of the DNN was selected empirically. Multiple NN architectures were trained as well, but we show results
for the DNN above as it gives the most accurate predictions (localization results).

The localization accuracy achieved with the DNN is 5.4 m (with a simulation period of 500 ms), which is a small improvement over
that achieved with kNN with k=12 and with the same simulation period (5.72 m). This improvement is expected, because a DNN is a
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Fig. 5. Learning curve for the kNN algorithm.
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Table 4
Mean and 95% CI of the localization error for different values of k and T=500.
k Mean (m) 95% CI (m)
4 6.0942 + 0.0480
8 5.8035 + 0.0453
12 5.7213 + 0.0446
16 5.7145 + 0.0447
T=0.5sec, k=12 T=1sec, k=12
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Fig. 6. Boxplot of the estimation errors with different simulation setup.
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Fig. 7. Boxplot of the estimation errors with different simulation periods.

more sophisticated algorithm for supervised learning, and as previously discussed, an optimization algorithm is used to optimize the
weights of the neurons to minimize the estimation error. As such, DNN is more robust to noise in the training data than other ML
algorithms such as kNN.

Fig. 9 shows the learning curve for the localization model developed with the DNN, i.e., the achieved estimation error with the
simulation interval, T, which indicates the length of the data set used to train the DNN. The longer the simulation period, the bigger the
dataset collected and used to train our model. As one can see, the approach starts to plateau after 300 ms, where increasing the
simulation period, and consequently the training data, did not cause a significant improvement on the localization accuracy. For
instance, increasing the simulation period from 500 ms to 1 sec (double) only caused a 0.1 m increase in the localization accuracy.

Fig. 10 shows the boxplot of the estimation errors achieved with the DNN and kNN (k = 12). As one can see, small improvements are
achieved with the DNN over the kNN in terms of localization errors. In addition to the slight reduction in the average localization error
(as discussed above) and the median value (Fig. 10), one can see from Fig. 10 that the maximum localization error is also reduced by
about 1 m. Again, this is since DNN is a more sophisticated algorithm for supervised learning, where an optimization algorithm is used
to optimize the weights of the neurons to minimize the estimation error.

Table 5 provides a comparison of our results above (using kNN and DNN) with the results achieved by other proposed cellular
network-based systems. As can be seen from Table 5, our results provide a significant improvement over those achieved by other
proposed systems. Furthermore, we will see in Section 5.4 that reducing the inter-distance between the stations will further improve

11
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Fig. 10. Boxplot of the estimation errors with kNN and DNN.

the localization accuracy.

5.3. Building occupancy count estimation
In this section, we consider the problem of building occupancy-count estimation, i.e., estimating the number of people in the

12
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Table 5
Comparison with results achieved with other proposed cellular network-based systems.
Mean localization error (m) RMSE (m) Median (m) 68 percentile (m)

Our work (kNN) 5.72 6.68 5.02 6.78
Our work (DNN) 5.39 6.36 4.79 6.29
EKAT [30] - 9.61 -
TNR [30] - 11.50
CellSense (rural) [47] - - 42.43
CellSense (urban) [47] - - 27.86
RNN-LSTM [32] - 9.02 -
TA-based [29] - - - 62.0

building using their 5G mobile devices. The problem of occupant detection inside the building is formulated as a binary-classification
problem. The two classes considered are users inside the building (the “inside” class) and users outside the building (the “outside”
class). The Processing Unit can easily use the total number of UEs that are detected inside the building (classified as inside) as the
building occupancy-count estimation.

As with localization, a fingerprinting-based approach is considered here, where a grid of UEs is used to collect RSSI values and build
a fingerprinting database. However, instead of estimating the location of the UEs here, the developed models classify the users into one
of the two aforementioned classes, based on their RSSI values from the different stations.

The considered scenario is shown in Fig. 11. As shown in the figure, the scenario has a 100 m x 60 m area. The area contains an 80
m x 40 m building. This means that out of the total 6000 m? area, 3200 m? is an indoor sub-area, and the rest is an outdoor sub-area. A
grid of UEs with 2 m x 2 m separation is used to build the fingerprinting database. UEs inside the red border are considered inside the
building, and the remaining UEs are considered outside the building. The total number of UEs is 1581. The number of UEs inside and
outside the building is 741 and 840, respectively. The simulation duration was set to 500 ms. Four algorithms were used to build
classification models that can be used to classify whether users are inside or outside the building. The used algorithms are: kNN,
decision tree, SVM, and LR.

The kNN algorithm can be used for solving regression as well as classification problems. The difference is in the last step. When used
for regression, the algorithm uses the values of the nearest neighbors to predict the value (e.g., by taking the average value). On the
other hand, when used for classification, it will use the most popular value among the values of the nearest neighbors as the chosen
class. We train kNN models with different values of k. The obtained results are shown in Fig. 12. As can be seen in the figure, the best
accuracy is achieved at k = 3, which is 0.999272. Furthermore, as one can tell, this is a high accuracy for classification, which means
that the algorithm can be used to accurately estimate the count of devices in the building.

The second algorithm used to build a classification model is decision tree. The maximum depth parameter used is 6. This value was
chosen empirically by testing with different values. The classification accuracy achieved with decision tree is 0.993548, which is also
remarkably high, although it is slightly lower than that achieved with kNN. A third model was trained with the SVM algorithm. The
classification accuracy achieved with SVM is 0.999557. The last classification model was trained with LR. In addition to classification,
LR can be used to estimate the probability of each predicted class. The classification accuracy achieved with LR was 0.991429. High
classification accuracy was achieved with the 4 classification algorithms. This verifies that the proposed approach can be used to
accurately predict the number of occupants in a building. In addition to the classification accuracy, we also measured other metrics to
evaluate the classification. These are the Jaccard index, F1 score, and the log loss for LR. All the obtained values are summarized in
Table 6. As one can see, high values were achieved for the Jaccard and F1 scores with all the algorithms.

Comparing the results obtained here for binary classification of UEs (as “inside” or “outside™) with the results achieved for
localization, we can see that the proposed approach on using ML algorithms with UDNs can achieve higher success with occupancy
count estimation than with localization. This is due to the fact that occupancy estimation is a simpler problem to solve, i.e., classifying
whether UEs are inside or outside the building, as opposed to localization where a model is used to accurately identify the location of a
UEs within the building.

In addition to the above, further investigation was conducted into the small percentage of records that were misclassified. Analysis
has shown that with all the used algorithms, the small percentage of misclassifications resulted by UEs that are very close to the edge of
the building. The distortion (due to noise, shadowing, etc.) on the received signals of UE that is very close to the edge could sometimes
be enough to cause such misclassification.

5.4. Occupancy-count estimation in parts of a building

In this section, we built a localization model like the one in the previous sections and use it to estimate the occupant count in parts
of a building as opposed to the whole building. For the experiment in this section, we built a model for one of the floors in a building at
Carleton University, Canada. The floor plan is shown in Fig. 13. The dimension of the floor is 18.56 m x 46.84 m. In this experiment,
we are interested in estimating the occupant count in areas labeled as lab-1, lab-2, and lab-3. For this purpose, we build a fingerprinting
database for the building, with 8 PeNBs distributed in the building. To fit them into the building, we reduced the inter-distance be-
tween them to 10 m. A grid of UEs with separation of 2 m x 2 m is also used to build the fingerprinting database.

As with the previous experiments, we divided the collected data into training (80%) and test (20%) sets. We train a localization
model with a DNN, with 2 hidden layers of 30 nodes each. Results show that with this setup (reduced inter-distance), the average
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Table 6
Jaccard score, F1 score, and the log loss for all the classification algorithms.
Algorithm Jaccard Fl-score Log loss
kNN 0.998193 0.999019
Decision tree 0.988172 0.993548
SVM 0.999184 0.999557 -
LR 0.984222 0.991434 0.039799

localization error was reduced to 3.29 m. Fig. 14 shows the boxplot of the localization error with the different values of inter-distance,
i.e.,, 20 m and 10 m. As one can see, significant improvement is achieved by decreasing the inter-distance between the stations. In
addition to reducing the average localization error, the maximum localization error was reduced to 8 m.

After building the fingerprinting database, we use it for localization and occupancy-count estimation on a new test set of UEs
located in the areas of interest, i.e., lab-1, lab-2, and lab-3. We distributed 100 UEs randomly throughout the building. Then, we use the
localization model, to estimate the location of the UEs. It is worth mentioning that the average localization error obtained in the
experiment was 2.90 m. Afterwards, we take 3 sets of measurements. The first set of measurements is the number of UEs that were
originally located in each of the 3 labs. The second set of measurements comprises the number of UEs that are in each of the 3 labs
based on the estimated locations. The last set of measurements includes the number of UEs that were localized correctly in each one of
the labs. All the measurements are summarized in Table 7.

As shown in Table 7, lab-1 contained 10 UEs, and all of them were estimated to be in lab-1, i.e., the count estimation for UEs in lab-1
was exact. For lab-2 and lab-3, the estimated count is missing only 1 UE. From these results, one can say that the model can be used to
accurately estimate the UE count in parts of the buildings (e.g., lab area).

14
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Fig. 14. Box plot of the ocalization with different values for the PeNB interdistance.
6. Conclusion

The interest and market for indoor localization are increasing at a rapid rate, due to its importance in many areas such as
healthcare, defense and military, logistics and warehousing, and mobile applications. Moreover, the ability to sense mobile devices in
indoor environments can be used for building occupancy-count estimation, which is crucial in optimizing building operations and
management. In this paper, we present models for indoor localization and building occupancy-count estimation, with 5G Ultra-Dense
Networks. An algorithm is proposed to collect Received Signal Strength Indicator (RSSI) from User Equipment (UEs) and build a
fingerprinting database. Various Machine Learning (ML) algorithms were used to estimate the location of UEs in buildings from their
RSSI values. Obtained results based on Indoor Hotspot scenarios from the 3GPP standards show that a localization accuracy close to 5
m can be achieved with an inter-distance of 20 m between stations, and a localization accuracy of 3.29 m with an inter-distance spacing
of 10 m. This is an improvement over proposed systems based on cellular networks.

Additionally, detection of users in the building is treated as a binary-classification problem. Various ML algorithms were used to
build models for the detection of users inside the building for occupancy-count estimation. Our results show that the proposed

Table 7
Results for the occupancy count for all the considered labs.
Lab-1 Lab-2 Lab-3
Actual number of UEs 10 10 7
Estimated number of UEs 10 10 7
Number of UEs estimated correctly 10 9 6
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solutions can be used to detect devices and obtain occupancy-count estimations in the building with high accuracy. Finally, the
localization of users is used to estimate the occupancy count in parts of the building (e.g., lab area). Simulation results based on a model
for an actual building show that UDNs can provide accurate count estimations at a finer level (e.g., parts of a building). In future work,
5G UDN scenarios with higher levels of network densification can be considered.
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